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Abstract:  We extend the separation kernel abstraction to represent the enforcement of the principle of least privilege. 
In addition to the inter-block flow control policy prescribed by the traditional separation kernel paradigm, 
we describe an orthogonal, finer-grained flow control policy by extending the protection of elements to 
subjects and resources, as well as blocks, within a partitioned system. We show how least privilege applied 
to the actions of subjects provides enhanced protection for secure systems.  

1 INTRODUCTION 

The Sisyphean purgatory of penetrate and patch to 
which users of commodity systems are currently 
subjected has lead to increasing recognition that 
platforms with assurance of penetration resistance 
and non-bypassability are required for certain 
critical functions. This need for high assurance calls 
for a layered system architecture where enforcement 
mechanisms of the most critical policies themselves 
depend upon layers of no less assurance. For many 
high assurance systems currently being planned or 
developed, a general-purpose security kernel may 
provide more functionality than necessary, which 
has resulted in increased interest in the use of 
separation kernels to support real-time embedded 
systems and virtual machine monitors (VMM).  
Many of these separation kernels are minimized to 
have both static policies and static allocation of 
resources, such as is suitable for certain fixed-
configuration or embedded environments.   

Despite a resurgence of interest in the separation 
kernel approach, the principle of least privilege 
(PoLP) (Saltzer, 1975) is often overlooked in the 
design of traditional separation kernels due to the 
belief that a separation kernel should only be 
concerned with resource isolation.  A principal 
consequence of this omission is that problems 
relating to all-or-nothing security and over-
privileged programs are left for application 
designers (and security evaluators) to resolve. For 
systems that must protect highly sensitive or highly 
valuable resources, formal verification of the ability 

of the system to enforce its security policy is 
required.  Recent advances in the assurance 
requirements for high assurance systems (NSA, 
2004) have included verification of the target 
system’s conformance to the principle of least 
privilege. To provide vendors and integrators with 
tools to formally describe least privilege in 
separation kernels, a least privilege separation model 
is presented.  

1.1 A Least Privileged Separation Kernel 

In the context of a research project to build a high 
assurance separation kernel (Irvine, 2004) we have 
extended the separation kernel abstraction so that the 
principle of least privilege can be examined at the 
model level and can be verified to be enforced by 
systems that conform to that model.   

The traditional separation kernel paradigm 
describes a security policy in which activities in 
different blocks of a partitioned system are not 
visible to other blocks, except perhaps for certain 
specified flows allowed between blocks. (Here, 
“block” is defined in the traditional mathematical 
sense as a member of the non-intersecting set of 
elements that comprise the partition 0). If 
information flow is described only at the block level, 
then everything in a block can flow to everything in 
another block. This is contrary to the principle of 
least privilege required in high assurance systems. 
The least privilege separation model builds on the 
traditional separation abstraction by extending the 
granularity of described elements to the subjects 



 

(Lampson, 1974) and resources within the partition.  
An orthogonal flow control policy can then be 
expressed relative to subjects and resources, thus 
providing all of the functionality and protection of 
the traditional separation kernel, combined with a 
high level of confidence that the effects of subjects’ 
activities may be minimized to their intended scope.   

In the sections that follow we will elaborate on 
the concept of separation kernels and the need for 
least privilege in such systems.  In particular, the 
granularity of inter-block flows will be discussed in 
terms of “subject” and “resource” abstractions. A 
formalization of the least privilege separation model 
is presented and several aspects of secure system 
design and verification are discussed with respect to 
the model. The last sections of the paper review 
related work, and summarize our results. 

2 Concepts 

2.1 The Separation Kernel 

The term separation kernel was introduced by 
Rushby, who originally proposed, in the context of a 
distributed system, that a separation kernel creates 
“within a single shared machine, an environment 
which supports the various components of the 
system, and provides the communications channels 
between them, in such a way that individual 
components of the system cannot distinguish this 
shared environment from a physically distributed 
one” (Rushby, 1981).  A separation kernel divides 
all resources under its control into blocks such that 
the actions of an active entity (i.e., a subject) in one 
block are isolated from (viz., cannot be detected by 
or communicated to) an active entity in another 
block, unless an explicit means for that 
communication has been established (e.g., via 
configuration data).  

A separation kernel achieves isolation of subjects 
in different blocks by virtualization of shared 
resources: each block encompasses a resource set 
that appears to be entirely its own.  To achieve this 
objective for resources that can only be utilized by 
one subject at a time, such as the CPU, the ideal 
separation kernel must ensure that the temporal 
usage patterns of subjects from different blocks are 
not apparent to each other. Other resources, such as 
memory, may be accessed by different blocks 
simultaneously, while preserving idealized isolation, 
if the separation kernel ensures, for example, that 

blocks are allocated different and non-interacting 
portions of the resource.  Furthermore, kernel 
utilization of its own internal resources must also 
preserve the desired isolation properties. 

Separation kernels differ from virtual machine 
monitors, in that support for communication 
between blocks is required in the former, whereas a 
functional replication of the hardware interface is 
required in the latter.  Specific implementations 
may, however, provide both kinds of support. 

2.2 The Principle of Least Privilege 

Saltzer and Schroeder concluded that least privilege 
is one of the eight design principles that can reduce 
design flaws (Saltzer, 1975).  They defined least 
privilege by stating “every program and every user 
of the system should operate using the least set of 
privileges necessary to complete the job.  Primarily, 
this principle limits the damage that can result from 
an accident or error.  It also reduces the number of 
potential interactions among privileged programs to 
the minimum for correct operation, so that 
unintentional, unwanted, or improper uses of 
privilege are less likely to occur.”  

A decade later, the U.S. Department of Defense 
included a similar definition of least privilege in the 
Trusted Computer System Evaluation Criteria 
(TCSEC) (DoD, 1985). Layering, modularity and 
information hiding are constructive techniques for 
least privilege that can be applied to the internal 
architecture of the underlying trusted foundation 
(e.g., separation kernel) to improve the system’s 
resistance to penetration.  The kernel can also be 
configured to utilize protection mechanisms such as 
access control and fine-grained execution domains 
to limit the abilities of a subject so that it is 
constrained to perform only the tasks for which it is 
authorized.  

2.3 High Assurance Criteria and Least 
Privilege 

The TCSEC refers to the principle of Least Privilege 
in two different contexts: the internal structure of the 
“trusted computing base” (TCB), and the ability of 
the TCB to grant to subjects a minimal set of 
authorizations or privileges. Despite the lack of an 
explicit reference to the principle of least privilege, 
the Common Criteria (CC) (CCPSO, 2005) provides 
the groundwork for it in several ways. It defines 
assurance as “grounds for confidence that an entity 
meets its security objectives.”   The CC explains that 



 

 

the correctness and effectiveness of the security 
functions are the primary factors for establishing the 
assurance that security objectives are met. A high 
assurance separation kernel must be proven to 
correctly implement the security functions defined in 
its specifications and effectively mitigate risks to a 
level commensurate with the value of the assets it 
protects.  To complement the formal proof, a 
constructive analysis is used to demonstrate that the 
implementation maps to the specification. Thus, a 
focus on resource separation and the structured 
allotment of privileges affords simplicity to the 
separation kernel, and enables a high assurance 
analysis of the correctness of its implementation. 

If a system cannot restrict individual users and 
programs to have only the access authorizations that 
they require to complete their functions, the 
accountability mechanisms (e.g., audit) will likely be 
less able to accurately discern the cause of various 
actions. A securely deployed system must be 
capable of supporting least privilege, and must have 
been administratively configured such that any 
programs that might execute will be accorded access 
to the minimal set of resources required to complete 
their jobs. To provide high assurance of policy 
enforcement, a system should be able to apply least 
privilege at the same granularity as the resource 
abstractions that it exports (e.g., individual files and 
processes).  

2.4 Practical Considerations 

In the commercial security community, the use of 
the principle of least privilege has taken on the 
primary meaning, over time, of placing limits on the 
set of simultaneous policy-exemption privileges that 
a single user or application program can hold, such 
as may be associated with a ‘root’ process on a 
UNIX system.  The commercial use of “least 
privilege” is not concerned with internal TCB 
structure or with the limitation of normal file-access 
authorizations for non-privileged processes.  Note 
however, that a separation kernel has no notion of 
policy-exemption privileges or of privileged 
processes -- if the SK does not provide individual 
authorizations to the resources available at its 
interface, it cannot be used provide least privilege 
protection in the application domain. It is also noted 
that commercial product vendors have long ignored 
the assurance benefits of well-structured code.  
Thus, commercial product development experience 
and precedence in the area of PoLP is not germane 
to the construction of high robustness separation 

kernels, wherein both contexts of PoLP must be 
applied. 

In practice, a separation kernel providing strict 
isolation is of little value. Controlled relaxation of 
strict separation allows applications to interact in 
useful ways, including participation in the 
enforcement of application-level policies. In the 
latter case, applications hosted on a separation 
kernel will need to be examined and evaluated to 
ensure that the overall system security policies are 
enforced. A monolithic application that runs with the 
same set of privileges throughout all of its modules 
and processes is hard to evaluate.  In order to reason 
about the assurance properties of the system, the 
applications should be decomposed into components 
requiring varying levels of privilege.  Such 
decomposition is more meaningful if the privilege 
boundaries are enforced by the separation kernel, 
rather than relying on, for example, error-prone ad 
hoc agreements between programmers or 
integrators.  The principle of least privilege affords a 
greater degree of scrutiny to the evaluation of both 
the kernel and the application, resulting in a higher 
level of assurance that the overall system security 
objectives are met.   

To better understand the use of least privilege in 
a separation kernel, we now turn to a closer 
examination of isolation and flows in these systems. 

3 Inter-Block Flows  

The first-order goal of a separation kernel is to 
provide absolute separation of the (effects of) 
activities occurring in different blocks.  In practice, 
however, separation kernels are often used to share 
hardware among kindred activities that have reason 
to communicate in some controllable fashion. 
Therefore, we include in the separation kernel a 
policy and mechanism for the controlled sharing of 
information between blocks. 

The control of information flow between blocks 
can be expressed abstractly in an access matrix, as 
shown in the example of Table 1.  This allows 
arbitrary sharing to be defined, establishing the 
inter-block flow policy to be enforced on the 
separation kernel applications. 

Table 1: Block-to-Block Flow Matrix 
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Notice that an inter-block flow policy in which 
the flow relationships partially order the blocks, 
such as in Table 1, may be suitable for the 
enforcement by the separation kernel of a multilevel 
confidentiality or integrity policy if meaningful 
sensitivity labels are immutable attributes of the 
blocks.  Under the conditions that a static separation 
kernel does not change the policy or resource 
allocation during execution, and that the policy is 
not changed while the separation kernel is shut 
down, the policy may be considered to be global and 
persistent, viz. non-discretionary.  In this example, 
information flows (represented by ⇒) form the 
following ordering:  Block A ⇒ Block B ⇒ Block 
C.   An assignment of labels to these blocks in 
conjunction with the rules defined in Table 1 results 
in a recognizable multilevel security policy: 

Block A := Unclassified  
Block B := Secret  
Block C := Top Secret 

The block-to-block flow policy allows all of the 
information in a “source” block (e.g., Block A, 
above) to flow to every element of a “target” block 
(e.g., Block B, above).  Extending the Table 1 
scenario, if block B is also allowed to write to block 
A, for example to implement a downgrade function 
with respect to the assigned labels, then all of the 
code or program(s) in block B would need to be 
examined to ensure that their activities correspond to 
the intended downgrading semantics.  If this 
assurance of correct behavior cannot be provided, 
such a circular flow (A ⇒ B ⇒ A) would create, in 
effect, one large policy equivalence class consisting 
of all of the information in blocks A and B. 

To limit the effects of block-to-block flows, we 
next introduce the notion of controlling how much 
information is to be allowed to flow between and 
within blocks. 

4 Least Privilege Flow Control 

The implementation of a separation kernel results in 
the creation of active entities (subjects) that execute 
under the control of the separation kernel and the 
virtualization of system resources exported at the 
kernel interface (see Figure 1). Historically, many 
security models have utilized the abstraction of an 
object (Lampson, 1974). Because objects have been 
classified in various ways, we decided to avoid this 
nomenclature issue by simply modeling “resources.”  
Similarly, as the definition of “resources” includes 
the abstractions that are exported by the separation 
kernel, “subjects” are defined to be a type of 
resource.  

Resources are defined as the totality of all 
hardware, firmware and software and data that are 
executed, utilized, created, protected or exported by 
the separation kernel.  Exported resources are those 
resources (including subjects) to which an explicit 
reference is possible via the separation kernel 
interface.  That interface may include programming, 
administrative, and other interfaces. In contrast, 
internal resources are those resources for which no 
explicit reference is possible via the kernel interface.  

Various implementations of separation kernels 
have elected to describe the system only in terms of 
blocks without describing the active system entities 
that cause information flow.  Since the concept of 
subjects (Lampson, 1974) is a term of art – and for 
good reason  – we will use it to describe the active 

Figure 1: Example Separation Kernel Configuration 
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entities exported by in the separation kernel.  
We have found the use of the subject abstraction 

to be indispensable for reasoning about security in 
secure systems. Without the subject abstraction, it 
may be difficult to understand, for example, which 
block in a partitioned system is the cause of a flow 
between blocks  (Alves-Foss, 2004) (e.g., the flow 
could have been caused by the receiving block as a 
reader or by the sending block as a writer), which 
application programs within a block need to be 
trusted (e.g., evaluated with respect to the security 
policy), and how to minimally configure the 
programs and resources of such a system to achieve 
the principle of least privilege. Just as when writing 
prose, if actions are described passively (i.e., not 
attributable to the subject of a sentence) the cause of 
the action can be ambiguous. In addition, use of 
subjects permits construction of a resource-to-block 
allocation that provides a minimal configuration for 
least privilege (see Section 4.3).  Modeling of 
subjects within a partition also allows the 
representation and examination of more complex 
architectures such as multiple rings of execution, as 
well as multithreaded and multi-process approaches.   

Figure 1 shows an example separation kernel 
system with three blocks, three subjects, a set of 
other resources, and some designated flows. 

An allocation of subjects and other exported 
resources to blocks is illustrated in Table 2, i.e., a 
“tagging” of each subject and resource with its 
partition (per Figure 1). Of the resources described 
in this table, the first three are subjects and the 
remaining exported resources are passive. Every 
resource is allocated to one and only one block. 
Consequently, we can state that the blocks of the 
separation kernel constitute a partition (in the 
mathematical sense) where: R is the nonempty set of 
resources and B is a nonempty set of subsets of R 
such that each element of R belongs to exactly one 
of the elements of B. From elementary set theory, it 
is known that a partition, B, can be used to create an 
equivalence relation on R. Thus we may induce that 
the allocation of resources to partitions creates 
equivalence classes. 

Table 2:  Resource to Block Allocation 

Resources  
1 2 3 4 5 6 7 8 9 10 

Bl
oc

ks
 

A A B A A B B B C C 

The principle of least privilege requires that each 
subject be given only the privileges required to do its 

particular task and no more.  The separation kernel 
can support this objective by assigning access rights 
appropriately to the subjects within the block.  Rules 
can be defined for accessing different resources 
within a block.  Table 3 illustrates how allocations to 
support the principle of least privilege are possible 
when the separation kernel supports per-subject and 
per-resource flow-control granularity: no subject is 
given more access than what is required to allow the 
desired flows (only the resources that are part of a 
flow are shown in this table). 

Table 3: Subject-to-Resource Flow Matrix 

Resources   
1 2 4 5 6 9 

1 - RW RW - - - 
2 RW - - R W - 
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Together, Tables 2 and 3 show abstract 

structures which allow only the flows illustrated in 
Figure 1.  It is clear that the corresponding Block-to-
Block flow matrix in Table 1, by itself, would allow 
many more flows than those illustrated in Figure 1.   

5 Applications of Least Privilege 

5.1 Kernel-controlled Interference 

In practical MLS system policies, several cases arise 
in which the normal information flow rules are 
enhanced.  For example, (1) a high confidentiality 
user may need to downgrade a file and send it to a 
low confidentiality user, and (2) a high integrity user 
may need to read a low integrity executable file 
(viz., a program).  In both cases, the system may 
allow the transfer if the file passes through an 
appropriate filter: in the former, the filter must 
ensure that the file does not include any high-
confidentiality information; in the latter case, the 
filter must ensure that the file does not include any 
Trojan Horses. These system policies allow a 
“controlled” interference of the low sensitivity 
domain (sometimes called “intransitive 
noninterference” (Rushby92)).  That is, a flow 
connecting two endpoint processes is prohibited 
except when going through an intermediate filter 
process.  



 

A typical implementation of these policies in 
separation kernel and security kernel architectures is 
to use a “trusted subject,” in which the filter process 
is assigned a security range that spans the 
confidentiality or integrity range of the endpoint 
processes.  However, this solution has the drawback 
that the kernel allows the filter process to access all 
information in both domains.  With a Least Privilege 
Separation Kernel, the kernel can be configured to 
restrict the interference to a specific subset of the 
information in each domain, thereby requiring less 
trust in to be placed the filter process, as shown in 
Figure 2.   

5.2 Regraders 

Within a block, it may be necessary to perform 
certain transformations on information that change 
its security attributes.  For example, a guard 
(Anderson, 1981) performs information review and 
downgrading functions; and a quality assurance 
manager transforms prototype code into production 
code by re-grading it in terms of reliability.  For 
each of these transformations there may be several 
subjects within a block performing various aspects 
of the task at hand. The principle of least privilege 
requires that each of these subjects be given only the 
privileges required to do its particular task and no 
more.   

An example of the application of least privilege 
separation is that of a “downgrader,” (see Figure 3) 
for re-grading selected information from classified 
to unclassified.  An initiator (UInit) process in A 
writes selected classified information to a classified 
holder buffer in Block A.  An untrusted copier 
process  moves the contents of the holder to the 
dirty-word search workspace in Block B. An 
untrusted dirty-word search process  (UDWS) in B  
provides advisory confirmation that the information 
is “suitable” for downgrading and copies the 
information into the clean results buffer (note that 
this process’s actions should be considered 
“advisory” since it is fully constrained by the 
mandatory policy enforcement mechanism).  Then 
the trusted downgrader (TDG) program in C  reads 
the information from the clean results buffer and 
writes it to an unclassified receiver buffer in D 
where it may be accessed by an unclassified end-
point process (UEnd).  As constrained by least 
privilege as encoded in the subject-to-resource flow 
matrix, the downgrader process in Block C cannot 
read from any resource other than the clean results 
and cannot write to any resource in D other than the 
receiver.  This  limits damage in the event of errors, 
for example in the downgrader, initiator or search 
processes, and contributes to a substantive argument 
that only the downgrader program needs to be 
trusted with respect to the application-level 

Figure 2: Kernel-based Strictly-Controlled Interference 



 

 

multilevel policy (viz., depended on to write down 
only when appropriate), and thus requires security 
verification with respect to that policy. 

6 Related Work 

6.1 Protection Profiles for Separation 
Kernels  

The Common Criteria security evaluation paradigm 
includes a document called a protection profile that 
specifies the security functionality and assurance for 
an entire class of IT products, as well as a document 
called a security target, which provides a similar 
specification for a specific IT product.  The 
protection profile is evaluated for consistency with 
the Common Criteria requirements for protection 
profiles; the security target is evaluated for 
consistency with the Common Criteria requirements 
for security targets, as well as for consistency with 
an identified protection profile (if any); and finally 
the product is evaluated against the security target.  

A forthcoming high robustness protection profile 
for separation kernels  (Levin, 2005; Nguyen, 2006). 
includes least privilege requirements regarding 
subjects as well as kernel-internal mechanisms.  
Several commercial efforts are underway to develop 
separation kernels to meet this profile, include those 
at Greenhills, and LinuxWorks (Ames, 2003). 

6.2 Trusted Computing Exemplar Project 

Separation kernel technology is being applied in our 
Trusted Computing Exemplar project (Irvine, 2004). 

This ongoing effort is intended to produce a high 
assurance least privilege separation kernel.  The 
kernel will have a static runtime resource 
configuration and its security policy regarding 
access to resources will be based on 
process/resource access bindings, via offline 
configuration (e.g., via an access matrix, such as are 
shown in Figures 1, 2 and 4).   The static nature of 
resource allotment will provide predictable 
processing behavior, as well as limit the covert 
channels based on shared resource utilization 
(Lampson, 1974; Kemmerer, 1982; Millen, 1987). 
Simple process synchronization primitives will also 
be provided, that can be implemented to be 
demonstrably free of covert channels (Reed, 1979).  
This kernel is also used as the security foundation 
for the SecureCore architecture (Irvine, 2006). 

6.3 Type Enforcement Architectures 

Bobert and Kain (Boebert, 1985) described a “type 
enforcement architecture” with the capability to 
provide least privilege at a fine granularity, a form 
of which is used in the SELinux project (Loscocco, 
2001).  There are currently no high assurance 
instances of such systems today.  

7 Conclusion 

The separation kernel abstraction and the principle 
of least privilege are significant tools for the 
protection of critical system resources. In this paper, 
we described a fusion of the separation abstraction 
with the least privilege principle.  In addition to the 
inter-block flow control policy prescribed by the 

 

 

Figure 3: Trusted Downgrader. Dark areas with white text are trusted. 



 

traditional separation kernels, this approach supports 
an orthogonal, finer-grained flow control policy by 
extending the granularity of protected elements to 
subjects and resources, as well as blocks, in a 
partitioned system. We showed how least privilege 
provides assurance that the effects of subjects’ 
activities may be minimized to their intended scope. 

In summary, application of the principle of least 
privilege, resource separation and controlled sharing 
are synergistic security properties in a separation 
kernel.  Each subject is only given a minimum set of 
logically separated resources necessary to perform 
its assigned task, and the sharing of resources 
between subjects is rigorously controlled by the 
kernel.  A separation kernel that correctly 
implements these properties can meet the objective 
to minimize and confine damage with a high level of 
assurance. 
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